DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation
View PDF
HTML (experimental)
Abstract:Diffusion large language models (dLLMs) are compelling alternatives to autoregressive (AR) models because their denoising models operate over the entire sequence. The global planning and iterative refinement features of dLLMs are particularly useful for code generation. However, current training and inference mechanisms for dLLMs in coding are still under-explored. To demystify the decoding behavior of dLLMs and unlock their potential for coding, we systemat...
Read more at arxiv.org