Detecting hallucinations in large language models using semantic entropy
Semantic entropy as a strategy for overcoming confabulation builds on probabilistic tools for uncertainty estimation. It can be applied directly to any LLM or similar foundation model without requiring any modifications to the architecture. Our ‘discrete’ variant of semantic uncertainty can be applied even when the predicted probabilities for the generations are not available, for example, because access to the internals of the model is limited.In this section we introduce background on probabil...
Read more at nature.com