Increased LLM Vulnerabilities from Fine-tuning and Quantization
View PDF
HTML (experimental)
Abstract:Large Language Models (LLMs) have become very popular and have found use cases in many domains, such as chatbots, auto-task completion agents, and much more. However, LLMs are vulnerable to different types of attacks, such as jailbreaking, prompt injection attacks, and privacy leakage attacks. Foundational LLMs undergo adversarial and alignment training to learn not to generate malicious and toxic content. For specialized use cases, these foundational LLMs a...
Read more at arxiv.org