Why AI writing is so generic, boring, and dangerous: Semantic ablation
opinion Just as the community adopted the term "hallucination" to describe additive errors, we must now codify its far more insidious counterpart: semantic ablation.
Semantic ablation is the algorithmic erosion of high-entropy information. Technically, it is not a "bug" but a structural byproduct of greedy decoding and RLHF (reinforcement learning from human feedback).
During "refinement," the model gravitates toward the center of the Gaussian distribution, discarding "tail" data – the rare, pre...
Read more at theregister.com