Zebra-Llama: Towards Extremely Efficient Hybrid Models
View PDF
HTML (experimental)
Abstract:With the growing demand for deploying large language models (LLMs) across diverse applications, improving their inference efficiency is crucial for sustainable and democratized access. However, retraining LLMs to meet new user-specific requirements is prohibitively expensive and environmentally unsustainable. In this work, we propose a practical and scalable alternative: composing efficient hybrid language models from existing pre-trained models. Our approac...
Read more at arxiv.org